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Abstract

The prominent Top Trading Cycles (TTC) mechanism has attractive prop-

erties for school choice, as it is strategy-proof, Pareto efficient, and allows school

boards to guide the assignment by specifying priorities. However, the common

combinatorial description of TTC does not help explain the relationship be-

tween student priorities and their eventual assignment.

We show that the TTC assignment can be described by admission cutoffs

for each pair of schools. These cutoffs parallel prices in competitive equilib-

rium, with students’ priorities serving the role of endowments. In a continuum

model these cutoffs can be computed directly from the distribution of prefer-

ences and priorities, providing a framework that can be used to evaluate policy

choices. We provide closed form solutions for the assignment under a family of

distributions, and derive comparative statics. As an application of the model

we solve for the welfare maximizing distribution of school quality, and find that

a more egalitarian distribution can be more efficient because it promotes more

efficient sorting by students.
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1 Introduction

School choice mechanisms are commonly used to determine school admission based

on student preferences and school priorities. Informed by advances in school choice

theory, many school districts redesigned their school choice mechanisms (Abdulka-

diroğlu & Sönmez 2003, Abdulkadiroğlu et al. 2005, Pathak & Sönmez 2013, IIPSC

2017), with most choosing to implement the Deferred Acceptance (DA) mechanism

(Gale & Shapley 1962).1 However, DA is inefficient, in that it may produce assign-

ments that are Pareto dominated for students. For example, students are commonly

given priority for their neighborhood schools, and DA may assign two students to

their respective neighborhood schools even if both students would prefer to swap

their assignments.2

Such inefficiencies are addressed by the Top Trading Cycles (TTC) mechanism

(Shapley & Scarf (1974), attributed to David Gale), which was proposed for school

choice by Abdulkadiroğlu & Sönmez (2003). In the TTC mechanism each school

offers a seat to its highest priority student, and students can trade seats with other

students. The mechanism sequentially assigns students by offering seats and finding

trading cycles.

While the theoretical literature promotes TTC for being Pareto efficient and

strategy-proof for students, there is no guarantee that TTC Pareto improves upon

DA. Moreover, while the sequential clearing of trade cycles is simple to state, it re-

sults in an opaque mapping between a student’s priorities and their assignment. In

particular, a major drawback of the algorithmic description of TTC is that it makes it

difficult to discern how a student’s priorities determine their assignment under TTC.

This is exacerbated by the fact that priority at a school has different implications

under DA and TTC; under TTC (in contrast to DA) it is possible for a student to

gain admission to one school by having priority at another school. This means that

1The only instances where TTC was implemented for school choice are in the San Francisco
school district and previously in the New Orleans Recovery School District (Abdulkadiroğlu, Che,
Pathak, Roth & Tercieux 2017).

2Such a swap will not harm any other students, but can lead to an assignment that is unstable
with respect to the priority structure. While this may allow strategic agents to form blocking pairs
in other contexts (such as the NRMP), this is not a concern for many school districts (such as the
Boston Public Schools system) because of two attributes of school choice. First, priority for a school
is often determined by school zone, sibling status and lotteries. Thus, schools do not prefer higher
priority students. Second, schools cannot enroll students without the districts approval. (The NYC
high school admissions system is a notable exception, see Abdulkadiroğlu et al. (2009)).
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school boards could potentially redesign their priority structures to obtain their goals

under TTC, but in general the appropriate priority structures under DA and TTC

will be different, and current theory provides almost no guidance as to how to design

such priority structures under TTC.3

This lack of transparency has hindered the adoption of TTC.4 It caused difficulty

in communicating it to parents and school boards, raised concerns about whether

priorities would achieve their intended goals under TTC, and made it difficult to

convince students and parents that the mechanism was strategy-proof.5 It also made

it difficult for students to verify they were correctly assigned.

In this paper we develop a characterization of TTC that explains the role of

priorities in determining the TTC assignment. We show that the TTC assignment

can be concisely described by cutoffs {pcb} for each pair of schools b, c. These cutoffs

parallel prices in competitive equilibrium, with students’ priorities serving the role

of endowments. Thus, the role of priorities under TTC is as follows. Students can

use priority at school b to gain admission to school c if their priority at school b is

above the cutoff pcb. Each student is assigned to her most preferred school for which

she gained admission. If students privately know their priorities, publicly publishing

the cutoffs {pcb} allows each student to determine their assignment.6 We show that

there is a labeling of schools {1, .., n} such that for any b the cutoffs are ordered

p1
b ≥ p2

b ≥ . . . pbb = · · · = pnb . Additionally, to help convey to students that TTC is

strategy-proof, we derive cutoffs that are independent of the reported preferences of

a given student.

To facilitate tractable analysis of TTC, we formulate a continuum model of TTC

3Comparisons between DA and TTC rely on simulations, and typically use the same priority
structure for both mechanisms instead of optimizing the priority structures used for each mechanism,
see for example Abdulkadiroğlu et al. (2009) and Pathak (2016).

4Boston Public Schools considered both TTC and DA when redesigning its school choice in 2005,
and decided in favor of using DA, stating (BPS 2005): “The behind the scenes mechanized trading
makes the student assignment process less transparent.” Pathak (2016) writes: “I believe that the
difficulty of explaining TTC, together with the precedent set by New York and Boston’s choice of
DA, are more likely explanations for why TTC is not used in more districts, rather than the fact
that it allows for justified envy, while DA does not.”

5Boston’s final school committee report states (BPS 2005): “The Top Trading Cycles Algorithm
allows students to trade their priority for a seat at a school with another student. This trading shifts
the emphasis onto the priorities and away from the goals BPS is trying to achieve by granting these
priorities in the first place.” Additionally, the report suggests that “this trading of priorities could
lead families to believe they can still benefit from strategizing, as they may be encouraged to rank
schools to which they have priority, even if they would not have put it on the form if the opportunity
for trading did not exist.”
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in which the TTC assignment can be directly calculated from the distribution of

preferences and priorities by solving a system of equations. We present closed form

solutions for parameterized economies. The discrete TTC model is a particular case

of the continuum framework; for discrete problems the continuum TTC model calcu-

lates cutoffs that give the discrete TTC assignment. We show that the TTC assign-

ment changes smoothly with changes in the underlying economy, implying that the

continuum economy can also be used to approximate sufficiently similar economies.

The tractability of our framework relies on a novel approach to analyzing TTC.

A key idea that allows us to define TTC in the continuum is that the TTC algorithm

can be characterized by its aggregate behavior over many cycles. Any collection of

cycles must maintain trade balance, that is, the number of students assigned to each

school is equal to the number of students who claimed or traded a seat at that school.

For smooth continuum economies we reformulate the trade balance equations into a

system of equations that fully characterizes TTC. These equations provide a recipe

for calculating the TTC assignment.

The tractable continuum framework allows us to analyze the performance of TTC.

We provide comparative statics, calculate assignment probabilities under lotteries

and evaluate welfare. In particular, when priorities are partly determined by random

lottery, the probability that a student gains admission to a school can be directly

derived as the probability her random priority is above the required cutoffs. The

cutoff representation also yields for each student a budget set of schools at which she

gained admission, and these budget sets allow tractable expressions for welfare under

random utility models.

As an illustration of the framework, we apply it to study the effects of making a

school more desirable. As a shorthand, we refer to such changes as an increase in the

quality of the school.7 To evaluate the effects of increasing the quality of a school

6This cutoff representation allows us to give the following non-combinatorial description of TTC.
For each school b, each student receives b-tokens according to their priority at school b, where
students with higher b-priority receive more b-tokens. The TTC algorithm publishes cutoffs {pcb}.
Students can purchase a single school using a single kind of token, and the required number of b-
tokens to purchase school c is pcb. Theorem 1 shows the cutoffs can be observed after the run of TTC.
We thank Chiara Margaria, Laura Doval and Larry Samuelson for suggesting this explanation.

7Examples of such changes include increases in school infrastructure spending (Cellini et al.
2010), increases in school district funding (Hoxby 2001, Jackson et al. 2016, Johnson & Jackson
2017), reduction in class size (Krueger 1999, Chetty et al. 2011) and changes in an individual
school’s funding (Dinerstein et al. 2014), but our theoretical model is not specific to any of these
examples.
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it is necessary to account for changes in the assignment due to changes in student

preferences. First, we derive comparative statics that show how the assignment

and student welfare change with changes in a school’s quality. We decompose the

marginal change in student welfare into the direct increase in utility of students

assigned to the more desirable school and the indirect effect that arises from changes

in the assignment. A marginal increase in the quality of a popular school can have

a negative indirect effect on welfare: as some students switch into the school and

gain a marginal utility increase, other students are denied admission and can suffer

substantial losses. We quantify these effects in a parametric setting, showing that

increasing the quality of a popular school can decrease the welfare gains from sorting

on idiosyncratic preferences.

Second, we consider a school district’s problem of allocating resources to improve

schools, taking utilitarian welfare as a proxy for the school district’s objective. The

framework allows us to solve for the optimal distribution of school quality under

TTC for a parametric setting. We find that the optimal distribution of quality is

equitable, in the sense that it makes all schools equally over-demanded. An equitable

distribution of quality is efficient because it allows students more choice, yielding

better sorting on idiosyncratic preferences and therefore higher welfare. This can

hold even if some schools are more efficient at utilizing resources, as the benefits from

more efficient sorting can outweigh benefits from targeting more efficient schools.

As another application, we explore the design of priorities for TTC and find

that it is “bossy” in the sense that a change in the priority of a student that does

not alter her assignment can nonetheless alter the assignment of other students.

This implies that it is not possible to determine the TTC cutoffs directly through a

supply-demand equation as in Azevedo & Leshno (2016). We characterize the range

of possible assignments generated by TTC after changes to the relative priority of

high-priority students, and show that a small change to the priorities will only change

the assignment of a few students.

A third application of our model provides comparisons between mechanisms in

terms of assignments and welfare. We solve for welfare under TTC and DA in a

parametric setting and quantify how much welfare is sacrificed due to stability. A

comparison between TTC and DA across different school choice environments cor-

roborates a conjecture by Pathak (2016) that the difference between the mechanisms

becomes smaller with increased alignment between student preferences and school pri-
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orities. We also compare TTC to the Clinch and Trade mechanism (Morrill 2015b) in

large economies and find that it is possible for TTC to produce fewer blocking pairs

than the Clinch and Trade mechanism.

A few technical aspects of the analysis may be of interest. First, we note that the

trade balance equations circumvent many of the measure theoretic complications in

defining TTC in the continuum. Second, a connection to Markov chain theory allows

us to show that a solution to the marginal trade balance equations always exists, and

to characterize the possible trades.

1.1 Related Literature

Abdulkadiroğlu & Sönmez (2003) introduced school choice as a mechanism design

problem and suggested the TTC mechanism as a desirable solution. Since then,

TTC has been considered for use in a number of school choice systems. Abdulka-

diroğlu et al. (2005) discuss how the city of Boston debated between using DA and

TTC for their school choice systems and ultimately chose DA. Abdulkadiroğlu et al.

(2009) compare the outcomes of DA and TTC for the NYC public school system, and

show that TTC gives higher student welfare. Kesten (2006) studies the relationship

between DA and TTC, and shows that they are equivalent if and only if the priority

structure is acyclic.

Cutoff representations have been instrumental for empirical work on DA and

variants of DA. Abdulkadiroğlu, Angrist, Narita & Pathak (2017) use admission

cutoffs to construct propensity score estimates. Agarwal & Somaini (Forthcoming),

Kapor et al. (2016) structurally estimate preferences from rank lists submitted to non-

strategy-proof variants of DA. Both build on the cutoff representation of Azevedo &

Leshno (2016). We hope that our cutoff representation of TTC will be similarly

useful for empirical work on TTC.

Dur & Morrill (2017) show that the outcome of TTC can be expressed as the out-

come of a competitive market where there is a price for each priority position at each

school, and agents may buy and sell exactly one priority position. Our characteriza-

tion also provides a connection between TTC and competitive markets, but requires

a lower dimensional set of cutoffs and provides a method for directly calculating these

cutoffs. He et al. (Forthcoming) propose an alternative pseudo-market approach for

discrete assignment problems that extends Hylland & Zeckhauser (1979) and also
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uses admission cutoffs. Miralles & Pycia (2014) show a second welfare theorem for

discrete goods, namely that any Pareto efficient assignment of discrete goods with-

out transfers can be decentralized through prices and endowments, but require an

arbitrary endowment structure.

This paper contributes to a growing literature that uses continuum models in

market design (Avery & Levin 2010, Abdulkadiroğlu et al. 2015, Ashlagi & Shi 2015,

Che et al. 2017, Azevedo & Hatfield 2015). Our description of the continuum economy

uses the setup of Azevedo & Leshno (2016), who characterize stable matchings in

terms of cutoffs that satisfy a supply and demand equation. Our results from Section

4.2 imply that the TTC cutoffs depend on the entire distribution and cannot be

computed from simple supply and demand equations.

Ma (1994), Pápai (2000) and Pycia & Ünver (2017) give characterizations of

more general classes of Pareto efficient and strategy-proof mechanisms in terms of

clearing trade cycles. While our analysis focuses on the TTC mechanism, we believe

that our trade balance approach will be useful in analyzing these general classes of

mechanisms. Abdulkadiroğlu, Che, Pathak, Roth & Tercieux (2017) show that TTC

minimizes the number of blocking pairs subject to strategy-proofness and Pareto

efficiency. Additional axiomatic characterizations of TTC were given by Dur (2012)

and Morrill (2013, 2015a). These characterizations explore the properties of TTC,

but do not provide another method for calculating the TTC outcome or evaluating

welfare.

Several variants of TTC have been suggested in the literature. Morrill (2015b)

introduces the Clinch and Trade mechanism, which differs from TTC in that it iden-

tifies students who are guaranteed admission to their first choice and assigns them

immediately without implementing a trade. Hakimov & Kesten (Forthcoming) intro-

duce Equitable TTC, a variation on TTC that aims to reduce inequity. In Section

4.2 we show how our model can be used to analyze such variants of TTC and com-

pare their assignments. Other variants of TTC can also arise from the choice of

tie-breaking rules. Ehlers (2014) shows that any fixed tie-breaking rule satisfies weak

efficiency, and Alcalde-Unzu & Molis (2011), Jaramillo & Manjunath (2012) and Sa-

ban & Sethuraman (2013) give specific variants of TTC that are strategy-proof and

efficient. The continuum model allows us to characterize the possible outcomes from

different tie-breaking rules.

Several papers also study TTC in large markets.Hatfield et al. (2016) study the
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incentives for schools to improve their quality under TTC and find that even in a large

market a school may be assigned less preferred students when it improves its quality.

Our results in Section 4.1 quantify these effects. Che & Tercieux (2015, 2018) study

the properties of TTC in a large market where the heterogeneity of items grows as

the market gets large, whereas our setting considers a large population of agents and

a fixed number of item types. The results in Section 4 show that TTC has different

properties in these different large markets.

1.2 Organization of the Paper

Section 2 presents our cutoff characterization under the standard discrete TTC

model.. Section 3 presents the continuum TTC model and provides our main re-

sults that allow for direct calculation of the TTC cutoffs. In this section we also

demonstrate how our model can be used to calculate the TTC assignment, see Ex-

ample 2. Section 4 explores several applications: quantifying the effects of improving

school quality under school choice and solving for the optimal distribution of quality,

showing the “bossiness” of the TTC priorities, and comparing TTC with other mech-

anisms. Appendix A provides the intuition for the continuum TTC model. Appendix

B provides an example of a computation of the discrete TTC allocation through the

continuum framework. Omitted proofs can be found in the online appendix.

2 TTC in School Choice

2.1 The Discrete TTC Model

In this section, we describe the standard model for the TTC mechanism in the school

choice literature, and outline some of the properties of TTC in this setting.

Let S be a finite set of students, and let C = {1, . . . , n} be a finite set of schools.

Each school c ∈ C has a finite capacity qc > 0. Each student s ∈ S has a strict

preference ordering �s over schools. Let Chs (C) = arg max�s {C} denote s’s most

preferred school out of the set C. Each school c ∈ C has a strict priority ordering

�c over students. To simplify notation, we assume that all students and schools are

acceptable, and that there are more students than available seats at schools.8 It

8This is without loss of generality, as we can introduce auxiliary students and schools that
represent being unmatched.
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will be convenient to represent the priority of student s at school c by the student’s

percentile rank rsc = |{s′ | s �c s′}| / |S| in the school’s priority ordering. Note that

for any two students s, s′ and school c we have that s �c s′ ⇐⇒ rsc > rs
′
c and that

0 ≤ rsc < 1.

A feasible assignment is µ : S → C ∪ {∅} where |µ−1(c)| ≤ qc for every c ∈ C.
If µ(s) = c we say that s is assigned to c, and we use µ(s) = ∅ to denote that the

student s is unassigned. As there is no ambiguity, we let µ(c) denote the set µ−1(c)

for c ∈ C ∪ {∅}. A discrete economy is E = (C,S,�S ,�C, q), where C is the set

of schools, S is the set of students, q = {qc}c∈C is the capacity of each school, and

�S= {�s}s∈S , �C= {�c}c∈C.
Given an economy E, the discrete Top Trading Cycles algorithm (TTC) calculates

an assignment µdTTC (· | E) : S → C ∪ {∅}. We omit the dependence on E when it

is clear from context. The algorithm runs in discrete steps as follows.

Algorithm 1 (Top Trading Cycles). Initialize unassigned students S = S, available

schools C = C, capacities {qc}c∈C .

While there are still unassigned students and available schools:

• Each available school c ∈ C offers a seat by pointing to its highest priority

remaining student.

• Each student s ∈ S who was offered a seat points to her most preferred remain-

ing school.

• Select at least one trading cycle, that is, a list of students s1, . . . , s`, s`+1 =

s1 such that si+1 was offered a seat at si’s most preferred school. Assign all

students in the cycles to the school they point to.9

• Remove the assigned students from S, reduce the capacity of the schools they

are assigned to by 1, and remove schools with no remaining capacity from C.

TTC satisfies a number of desirable properties. An assignment µ is Pareto effi-

cient for students if no group of students can improve by swapping their allocations,

and no individual student can improve by swapping her assignment for an unassigned

object. A mechanism is Pareto efficient for students if it always produces an assign-

ment that is Pareto efficient for students. A mechanism is strategy-proof for students

9Such a trading cycle must exist, since every vertex in the pointing graph with vertex set S ∪C
has out-degree 1.
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if reporting preferences truthfully is a dominant strategy. It is well known that TTC,

as used in the school choice setting, is both Pareto efficient and strategy-proof for

students (Abdulkadiroğlu & Sönmez 2003). Moreover, when type-specific quotas

must be imposed, TTC can be easily modified to meet quotas while still maintain-

ing constrained Pareto efficiency and strategy-proofness (Abdulkadiroğlu & Sönmez

2003).

2.2 Cutoff Characterization

Our first main contribution is that the TTC assignment can be described in terms of

n2 cutoffs {pcb}, one for each pair of schools.

Theorem 1. Let E be an economy. The TTC assignment is given by

µdTTC(s | E) = max
�s
{c | rsb ≥ pcb for some b} ,

where pcb is the percentile in school b’s ranking of the worst ranked student at school

b that traded a seat at school b for a seat at school c during the run of the TTC

algorithm on E. If no such student exists, pcb = 1.

Cutoffs serve a parallel role to prices in Competitive Equilibrium, and each stu-

dent’s vector of priorities at each school serves as her endowment. For each student

s,the cutoffs p = {pcb}b,c combine with student s’s priorities rs to give s a budget

set B (s,p) = {c | rsb ≥ pcb for some b} of schools she can attend. TTC assigns each

student to her favorite school in her budget set.

The cutoffs pcb in Theorem 1 can be easily identified after the mechanism has been

run. Hence Theorem 1 provides an intuitive way for students to verify that they

were correctly assigned by the TTC algorithm. Instead of only communicating the

assignment of each student, the mechanism can make the cutoffs publicly known.

Students can calculate their budget set from their privately known priorities and the

publicly given cutoffs, allowing them to verify that they were indeed assigned to their

most preferred school in their budget set. In particular, if a student does not receive

a seat at a desired school c, it is because she does not have sufficiently high priority

at any school, and so c is not in her budget set. We illustrate these ideas in Example

1.
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Example 1. Consider a simple economy where there are two schools each with

capacity q = 120, and a total of 300 students, 2/3 of whom prefer school 1. Student

priorities were selected such that there is little correlation between student priority

at either school and between student priorities and preferences. Figure 1a illustrates

the preferences and priorities of each of the students. Each colored number represents

a student. The location of the student in the square indicates their priority, with the

horizontal axis indicating priority at school 1 and the vertical axis indicating priority

at school 2. The number indicates the student’s preferred school, and all students

find both schools acceptable. The color indicates the student’s assignment under

TTC.

The cutoffs p and resulting budget sets B (s,p) for each student are illustrated

in Figure 1b. The colors in the body of the figure indicate the budget sets given to

students as a function of their priority at both schools. The colors along each axis

indicate the schools that enter a student’s budget set because of her priority at the

school whose priority is indicated by that axis. For example, a student has the budget

set {1, 2} if she has sufficiently high priority at either school 1 or school 2. Note that

students’ preferences are not indicated in Figure 1b as each student’s budget set is

independent of her preferences. The assignment of each student is her favorite school

in her budget set.

Assigned to 1 Assigned to 2      Unassigned

(a) The economy E and the TTC assignment.

1,2

2

𝜙

Budget 

set {1,2}

Budget 
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(b) Budget sets for the economy E.

Figure 1: The economy and TTC budget sets for Example 1.

Figure 1 shows the role of priorities in determining the TTC assignment in Exam-

ple 1. Students with higher priority have a larger budget set of schools from which

they can choose. A student can choose her desired school if her priority for some
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school is sufficiently high. Priority for each school is considered separately, and pri-

ority from multiple schools cannot be combined. For example, a student who has

top priority for one school and bottom priority at the other school is assigned to her

top choice, but a student who has the median priority at both schools will not be

assigned to school 1.

Remark. This example also shows that the TTC assignment cannot be expressed

in terms of one cutoff for each school, as the assignment in Example 1 cannot be

described by fewer than 3 cutoffs.

2.3 The Structure of TTC Budget Sets

The cutoff structure for TTC allows us to provide some insight into the structure of

the assignment. For each student s, let Bb (s,p) = {c | rsb ≥ pcb} denote the set of

schools that enter student s’s budget set because of her priority at school b. Note

that Bb (s,p) depends only on the n cutoffs pb = {pcb}c∈C. A student’s budget set

is the union B (s,p) = ∪bBb (s,p).Figure 1(b) depicts B1 (s,p) and B2 (s,p) for the

economy of Example 1 along the x and y axes respectively.

The following proposition shows that budget sets Bb (s,p) can be given by cutoffs

pb that share the same ordering over schools for every b. We let C(c) = {c, c+ 1, . . . , n}
denote the set of schools that have a higher index than c.

Proposition 1. There exists a relabeling of school indices such that there exist cutoffs

p = {pcb} that describe the TTC assignment

µdTTC(s) = max
�s
{c | rsb ≥ pcb for some b} ,

and for any school b the cutoffs are ordered,10

p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = pnb . (1)

Therefore, the set of schools Bb (s,p) student s can afford via her priority at school

10The cutoffs p defined in Theorem 1 do not necessarily satisfy this condition. However, the run
of TTC produces the following relabeling of schools and cutoffs p̃ that give the same assignment
and satisfy the condition: the schools are relabeled in the order in which they reach capacity under
TTC, and the cutoffs p̃ are given by p̃cb = mina≤c p

a
b .
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b is either the empty set φ or

Bb (s,p) = C(c) = {c, c+ 1, . . . , n}

for some c ≤ b. Moreover, each student’s budget set B (s,p) = ∪bBb (s,p) is either

B (s,p) = φ or B (s,p) = C(c) for some c.

When there exist TTC cutoffs that satisfy inequality (1) we say that the schools

are labeled in order. The cutoff ordering proved in Proposition 1 implies that budget

sets of different students are nested, and therefore that the TTC assignment is Pareto

efficient. The cutoff ordering is a stronger property than Pareto efficiency, and is not

implied by the Pareto efficiency of TTC. For example, serial dictatorship with a

randomly drawn ordering will give a Pareto efficient assignment, but there is no

relationship between a student’s priorities and her assignment.

Proposition 1 allows us to give a simple illustration for the TTC assignment

when there are n ≥ 3 schools. For each school b, we can illustrate the set of schools

Bb (s,p) that enter a student’s budget set because of her priority at school b as in

Figure 2 (under the assumption that schools are labeled in order). This generalizes

the illustration along each axis in Figure 1(b), and can be used for any number of

schools. It is possible that pcb = 1, meaning that students cannot use their priority

at school b to trade into school c.

Figure 2: The schools Bb (s,p) that enter a student’s budget set because of her priority at school b.
The cutoffs pcb are weakly decreasing in c, and are equal for all c ≥ b (i.e. pbb = pb+1

b = · · · = pnb ).
That is, a student’s priority at b can add one of the sets C(1), C(2), . . . , C(b), φ to her budget set. If
any school enters a student’s budget because of her priority at b, then school b must also enter her
budget set because of her priority at b.

Dur & Morrill (2017) provide a characterization of TTC as a competitive equilib-

rium where a priority value function v(r, b) specifies the price of priority r at school

b and students are allowed to buy and sell one priority. Given TTC cutoffs {pcb}
where schools are labeled in order, the TTC assignment and priority value function

v (r, b) = n −min {c | r ≥ pcb} constitute a competitive equilibrium. We introduce a

framework in Section 3 that allows a direct calculation of this competitive equilibrium
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as a solution to a set of equations.

2.4 Limitations

Although the cutoff structure is helpful in understanding the structure of the TTC

assignment, there are several limitations to the cutoffs computed in Theorem 1 and

Proposition 1. First, while the cutoffs can be determined by running the TTC algo-

rithm, Theorem 1 does not provide a direct method for calculating the cutoffs from

the economy primitives. In particular, it does not explain how the TTC assignment

changes with changes in school priorities or student preferences. Second, the budget

set B (s,p) given by the cutoffs derived in Theorem 1 does not correspond to the set

of possible school assignments that student s can achieve by unilaterally changing

her reported preferences.11,12 We therefore introduce the continuum model for TTC

which allows us to directly calculate the cutoffs, allowing for comparative statics.

Using the continum model, we present in Section 3.4 cutoffs that yield refined budget

sets which provide for each student the set of schools that she could be assigned to

by unilaterally changing her preferences. Thus the appropriate cutoff structure also

makes it clear that TTC is strategy-proof.

3 Continuum Model and Main Results

3.1 Model

We consider the school choice problem with a continuum of students and finitely many

schools, as in Azevedo & Leshno (2016). There is a finite set of schools denoted by

11More precisely, given economy E and student s, let economy E′ be generated by changing the
preferences ordering of s from �s to �′. Let µdTTC (s | E) and µdTTC (s | E′) be the assignment of
s under the two economies, and let p be the cutoffs derived by Theorem 1 for economy E. Theorem
1 shows that µdTTC (s | E) = max�s B (s,p) but it may be µdTTC (s|E′) 6= max�′ B (s,p).

12For example, let E be an economy with three schools C = {1, 2, 3}, each with capacity 1. There
are three students s1, s2, s3 such that the top preference of s1, s2 is school 1, the top preference of
s3 is school 3, and student si has top priority at school i. Theorem 1 gives the budget set {1} for
student s1, as p1 =

(
2
3 , 1, 1

)
, p2 =

(
1, 23 , 1

)
and p3 =

(
1, 1, 23

)
, since the only trades are of seats at

c for seats at the same school c. However, if s1 reports the preference 2 � 1 � 3 she will be assigned
to school 2, so an appropriate definition of budget sets should include school 2 in the budget set for
student s1. Also note that no matter what preference student s1 reports, she will not be assigned
to school 3, so an appropriate definition of budget sets should not include school 3 in the budget
set for student s1.
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C = {1, . . . , n}, and each school c ∈ C has the capacity to admit a mass qc > 0 of

students. A student θ ∈ Θ is given by θ =
(
�θ, rθ

)
. We let �θ denote the student’s

strict preferences over schools, and let Chθ (C) = max
�θ

(C) denote θ’s most preferred

school out of the set C. The priorities of schools over students are captured by the

vector rθ ∈ [0, 1]C . We say that rθb is the rank of student θ at school b, or the b-rank

of student θ. Schools prefer students with higher ranks, that is θ �b θ′ if and only if

rθb > rθ
′

b .

Definition 1. A continuum economy is given by E = (C,Θ, η, q) where q = {qc}c∈C
is the vector of capacities of each school, and η is a measure over Θ.

We make some assumptions for the sake of tractability. First, we assume that all

students and schools are acceptable. Second, we assume there is an excess of students,

that is,
∑

c∈C qc < η (Θ). Finally, we make the following technical assumption that

ensures that the run of TTC in the continuum economy is sufficiently smooth and

allows us to avoid some measurability issues.

Assumption 1. The measure η admits a density ν. That is for any measurable

subset of students A ⊆ Θ

η(A) =

∫
A

ν(θ)dθ.

Furthermore, ν is piecewise Lipschitz continuous everywhere except on a finite grid,13

bounded from above, and bounded from below away from zero on its support.14

Assumption 1 is general enough to allow embeddings of discrete economies, and

is satisfied by all the economies considered throughout the paper. However, it is not

without loss of generality, e.g. it is violated when all schools share the same priorities

over students.15

An immediate consequence of Assumption 1 is that a school’s indifference curves

are of η-measure 0. That is, for any b ∈ C, x ∈ [0, 1] we have that η({θ | rθb = x}) =

0. This is analogous to schools having strict preferences in the standard discrete

model. As rθb carries only ordinal information, we may assume each student’s rank is

13A grid G ⊂ Θ is given by G =
{
θ | ∃c s.t. rθc ∈ D

}
, where D = {d1, . . . , dL} ⊂ [0, 1] is a finite

set of grid points. Equivalently, ν is Lipschitz continuous on the union of open hypercubes Θ \G.
14That is, there exists M > m > 0 such that for every θ ∈ Θ either ν(θ) = 0 or m ≤ ν(θ) ≤M .
15We can incorporate an economy where two schools have perfectly aligned priories by considering

them as a combined single school in the trade balance equations, as defined in Definition 2. The
capacity constraints still consider the capacity of each school separately.
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normalized to be equal to her percentile rank in the school’s preferences, i.e. for any

b ∈ C, x ∈ [0, 1] we have that η({θ | rθb ≤ x}) = x.

It is convenient to describe the distribution η by the following induced marginal

distributions. For each point x ∈ [0, 1]n and subset of schools C ⊆ C, let H
c|C
b (x) be

the marginal density of students who are top ranked at school b among all students

whose rank at every school a is no better than xa, and whose top choice among the set

of schools C is c.16 We omit the dependence on C when the relevant set of schools

is clear from context, and write Hc
b (x). The marginal densities H

c|C
b (x) uniquely

determine the distribution η.

As in the discrete model, an assignment is a mapping µ : Θ → C ∪ {∅} specify-

ing the assignment of each student. With slight abuse of notation, we let µ (c) =

{θ | µ (θ) = c} denote the set of students assigned to school c. An assignment µ is

feasible if it respects capacities, i.e. for each school c ∈ C we have η (µ(c)) ≤ qc. Two

allocations µ and µ′ are equivalent if they differ only on a set of students of zero

measure, i.e. η ({θ | µ (θ) 6= µ′ (θ)}) = 0.

Remark 1. In school choice, it is common for schools to have coarse priorities, and

to refine these using a tie-breaking rule. Our economy E captures the strict priority

structure that results after applying the tie-breaking rule.

3.2 Main Results

Our main result establishes that in the continuum model the TTC assignment can

be directly calculated from trade balance and capacity equations. This allows us

to explain how the TTC assignment changes with changes in the underlying econ-

omy. It also allows us to derive cutoffs that are independent of a student’s reported

preferences, giving another proof that TTC is strategy-proof.

We remark that directly translating the TTC algorithm to the continuum setting

by considering individual trading cycles is challenging, as a direct adaptation of the

16Formally

H
c|C
b (x)

def
= lim

ε→0

1

ε
η
({
θ ∈ Θ | rθ ∈ [(xb − ε) · eb,x) and Chθ (C) = c

})
=

∫
{θ|rθ∈[xb·eb,x) and Chθ(C)=c}

ν (θ) dθ,

where eb is the unit vector in the direction of coordinate b. In other words, H
c|C
b (x) is the density

of students θ with priority rθb = xb and rθa ≤ xa for all a ∈ C whose most preferred school in C is c.
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algorithm would require the clearing of cycles of zero measure. We circumvent the

technical issues raised by such an approach by formally defining the continuum TTC

assignment in terms of trade balance and capacity equations, which characterize the

TTC algorithm in terms of its aggregate behavior over multiple steps. To verify the

validity of our definition, we show in Subsection 3.3 that continuum TTC can be used

to calculate the discrete TTC outcome. We provide further intuition in Appendix A.

We begin with some definitions. A function γ (t) : [0,∞)→ [0, 1]C is a TTC path

if γ is continuous and piecewise smooth, γc (t) is weakly decreasing for all c, and the

initial condition γ (0) = 1 holds. A function γ̃ (t) : [t0,∞)→ [0, 1]C̃ is a residual TTC

path if it satisfies all the properties of a TTC path except the initial condition, and

γ̃c (t) is defined only for t ≥ t0 > 0 and c ∈ C̃ ⊂ C. For a set
{
t(c)
}
c∈C ∈ R

C
≥ of times

we let t(c
∗) def= minc

[
t(c)
]

denote the minimal time. For a point x ∈ [0, 1]C, let

Dc (x)
def
= η

({
θ | rθ 6< x, Chθ (C) = c

})
denote the mass of students whose rank at some school b is better than xb and their

first choice is school c. We will refer to Dc (x) as the demand for c. Recall that

Hc
b (x) is the marginal density of students who want c who are top ranked at school b

among all students with rank no better than x. Note that Dc (x) and Hc
b (x) depend

implicitly on the set of available schools C, as well as on the economy E .

A TTC path γ can capture the progression of a continuous time TTC algorithm,

with the interpretation that γc (t) is the highest c-priority of any student who remains

unassigned by time t. The stopping times
{
t(c)
}
c∈C indicate when each school fills

its capacity. To verify whether γ and
{
t(c)
}
c∈C can correspond to a run of TTC we

introduce trade balance conditions and capacity constraints as defined below.

Definition 2. Let E = (C,Θ, η, q) be an economy. We say that the (residual) TTC

path γ (t) and positive stopping times
{
t(c)
}
c∈C ∈ R

C
≥ satisfy the trade balance and

capacity equations for the economy E if the following hold.

1. γ (·) satisfies the marginal trade balance equations given by∑
a∈C

γ′a (t)Hc
a (γ (t)) =

∑
a∈C

γ′c (t)Ha
c (γ (t)) (2)

for all c ∈ C and all t ≤ t(c
∗) = minc

[
t(c)
]

for which the derivatives exist.
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2. The minimal stopping time t(c
∗) solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

(3)

and γc∗ (t) is constant for all t ≥ t(c
∗).

3. If C \ {c∗} 6= φ, define the residual economy Ẽ =
(
C̃,Θ, η̃, q̃

)
by C̃ = C \ {c∗},

q̃c = qc − Dc
(
γ
(
t(c
∗)
))

and η̃ (A) = η
(
A ∩

{
θ : rθ ≤ γ

(
t(c
∗)
)})

. Define the

residual TTC path γ̃ (·) by restricting γ (·) : [t(c
∗),∞)→ [0, 1]C̃ to t ≥ t(c

∗) and

coordinates within C̃. Then γ̃ and the stopping times
{
t(c)
}
c∈C̃ satisfy the trade

balance and capacity equations for Ẽ.

A brief motivation for the definition is as follows. TTC progresses by clearing

trading cycles, and in each trading cycle the number of seats offered by a school is

equal to the number of students assigned to that school. Equation (2) states that

over every small time increment the mass of students assigned to a school must be

equal to the mass of offers made by the school. While all schools have remaining

capacity, every assigned student is assigned to his first choice, and thus Dc (γ (t))

gives the mass of students assigned to school c at time t ≤ t(c
∗) in the algorithm. The

time t(c
∗) when school c∗ fills its capacity can be calculated as a solution to Equation

(3). Once a school exhausts its capacity we can eliminate that school and recursively

calculate the TTC assignment on the remaining problem with n−1 schools, which is

stated as condition (3). We provide more comprehensive intuition for the definition

and the results in Appendix A.

Our main result is that the trade balance and capacity equations fully character-

ize and provide a way to directly calculate the TTC assignment from the problem

primitives. We show in Section 3.3 that this characterization is consistent with the

discrete TTC.

Theorem 2. Let E = (C,Θ, η, q) be an economy. There exist a TTC path γ (·) and

stopping times
{
t(c)
}
c∈C that satisfy the trade balance and capacity equations. Any

γ (·) ,
{
t(c)
}
c∈C that satisfy the trade balance and capacity equations yield the same

assignment µcTTC, given by

µcTTC (θ) = max
�θ

{
c : rθb ≥ pcb for some b

}
,
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where the n2 TTC cutoffs {pcb} are given by

pcb = γb
(
t(c)
)
∀b, c.

In other words, Theorem 2 provides the following a recipe for calculating the TTC

assignment. First, find γ̂ (·) that solves the marginal trade balance equations (2) for

all t. Second, calculate t(c
∗) from the capacity equations (3) for γ̂ (·). Set γ (t) = γ̂ (t)

for t ≤ t(c
∗). To determine the remainder of γ (·), apply the same steps to the residual

economy Ẽ which has one less school.17 This recipe is illustrated in Example 2. The

TTC path used in this recipe may not be the unique TTC path, but all TTC paths

yield the same TTC assignment.

Theorem 2 shows that the cutoffs can be directly calculated from the primitives

of the economy. In contrast to the cutoff characterization in the standard model

(Theorem 1), this allows us to understand how the TTC assignment changes with

changes in capacities, preferences or priorities. We remark that the existence of a

smooth curve γ follows from our assumption that η has a density that is piecewise

Lipschitz and bounded, and the existence of t(c) satisfying the capacity equations (3)

follows from our assumptions that there are more students than seats and all students

find all schools acceptable.

The following immediate corollary of Theorem 2 shows that in contrast with the

cutoffs given by the discrete model, the cutoffs given by Theorem 2 always satisfy

the cutoff ordering.

Corollary 1. Let the schools be labeled such that t(1) ≤ t(2) ≤ · · · ≤ t(n). Then

schools are labeled in order, that is,

p1
b ≥ p2

b ≥ · · · ≥ pbb = pb+1
b = · · · = p

|C|
b for all b.

To illustrate how Theorem 2 can be used to calculate the TTC assignment and un-

derstand how it depends on the parameters of the economy, we consider the following

simple economy. This parameterized economy yields a tractable closed form solution

for the TTC assignment. For other economies the equations may not necessarily yield

tractable expressions, but the same calculations can be be used to numerically solve

for cutoffs for any economy satisfying our smoothness requirements.

17Continuity of the TTC path provides an initial condition for γ̃, namely that γ̃c
(
t(c
∗)
)

= γc
(
t(c
∗)
)

for all c.
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Example 2. We demonstrate how to use Theorem 2 to calculate the TTC assignment

for a simple parameterized continuum economy. The economy E has two schools 1, 2

with capacities q1 = q2 = q with q < 1/2. A fraction p > 1/2 of students prefer

school 1, and student priorities are uniformly distributed on [0, 1] independently for

each school and independently of preferences. This economy is described by

H (x1, x2) =

[
px2 (1− p)x2

px1 (1− p)x1

]
,

where Hc
b (x) is given by the b-row and c-column of the matrix. A particular instance

of this economy with q = 4/10 and p = 2/3 is illustrated in Figure 3. This economy

can be viewed as a smoothed continuum version of the economy in Example 1.

Figure 3: The TTC path, cutoffs, and budget sets for a particular instance of the economy E in
Example 2. Students in the dark blue region have a budget set of {1, 2}, students in the light blue
region have a budget set of {2}, and students in the white region have a budget set of φ.

We start by solving for γ from the trade balance equations (2), which simplify to

the differential equation18

γ′2 (t)

γ′1 (t)
=

1− p
p

γ2 (t)

γ1 (t)
.

Since γ (0) = 1, this is equivalent to γ2 (t) = (γ1 (t))
1
p
−1 . Hence for 0 ≤ t ≤

18The original trade balance equations are

γ′1 (t) pγ2 (t) + γ′2 (t) pγ1 (t) = γ′1 (t) pγ2 (t) + γ′1 (t) (1− p) γ2 (t) ,

γ′1 (t) (1− p) γ2 (t) + γ′2 (t) (1− p) γ1 (t) = γ′2 (t) pγ1 (t) + γ′2 (t) (1− p) γ1 (t) .
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min
{
t(1), t(2)

}
we set

γ (t) =
(

1− t, (1− t)
1
p
−1
)
.

We next compute t(c
∗) = min

{
t(1), t(2)

}
. Observe that because p > 1/2 it must be

that t(1) < t(2). Otherwise, we have that t(2) = min
{
t(1), t(2)

}
and D1

(
γ
(
t(2)
))
≤ q,

implying thatD2
(
γ
(
t(2)
))

= 1−p
p
D1
(
γ
(
t(2)
))
< q. Therefore, we solveD1

(
γ
(
t(1)
))

=

q to get that t(1) = 1−
(
p−q
p

)p
and that

p1
1 = γ1

(
t(1)
)

=

(
1− q

p

)p
, p1

2 = γ2

(
t(1)
)

=

(
1− q

p

)1−p

.

For the remaining cutoffs, we eliminate school 1 and reiterate the same steps for the

residual economy where C ′ = {2} and q′2 = q2 −D2
(
γ
(
t(1)
))

= q (2− 1/p).

For the residual economy the marginal trade balance equations (2) are trivial,

and we define the residual TTC path by

γ (t) =
(
p1

1, p
1
2 −

(
t− t(1)

))
for t(1) ≤ t ≤ t(2). Solving the capacity equation (3) for t(2) yields that

p2
1 = γ1

(
t(2)
)

=

(
1− q

p

)p
= p1

1, p2
2 = γ2

(
t(2)
)

= (1− 2q)

(
1− q

p

)−p
.

For instance, if we plug in q = 4/10 and p = 2/3 to match the economy in Example

1, the calculation yields the cutoffs p1
1 = p2

1 ≈ .54, p1
2 ≈ .73 and p2

2 ≈ .37, which are

approximately the same cutoffs as those for the discrete economy in Example 1.

Example 2 illustrates how the TTC cutoffs can be directly calculated from the

trade balance equations and capacity equations, without running the TTC algorithm.

Example 2 can also be used to show that it is not possible to solve for the TTC

cutoffs only from supply-demand equations. In particular, the following equations

are equivalent to the condition that for given cutoffs {pcb}b,c∈{1,2}, the demand for

each school c is equal to the available supply qc given by the school’s capacity:

p ·
(
1− p1

1 · p1
2

)
= q1 = q

(1− p) ·
(
1− p1

1 · p1
2

)
+ p1

1

(
p1

2 − p2
2

)
= q2 = q.
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Any cutoffs p1
1 = p2

1 = x, p1
2 = (1 − q/p)/x, p2

2 = (1− 2q)x with x ∈ [1− q/p, 1]

solve these equations, but if x 6=
(

1− q
p

)p
then the corresponding assignment is

different from the TTC assignment. Section 4.2 provides further details as to how

the TTC assignment depends on features of the economy that cannot be observed

from supply and demand alone. In particular, the TTC cutoffs depend on the relative

priority among top-priority students, and not all cutoffs that satisfy supply-demand

conditions produce the TTC assignment.

3.3 Consistency with the Discrete TTC Model

In this section we first show that any discrete economy can be translated into a

continuum economy, and that the cutoffs obtained using Theorem 2 on this continuum

economy give the same assignment as discrete TTC. This demonstrates that the

continuum TTC model generalizes the standard discrete TTC model. We then show

that the TTC assignment changes smoothly with changes in the underlying economy.

To represent a discrete economy E =
(
C,S,�C,�S , q

)
with N = |S| students

by a continuum economy Φ (E) =
(
C,Θ, η, q

N

)
, we construct a measure η over Θ

by placing a mass at (�s, rs) for each student s. To ensure the measure has a

bounded density, we spread the mass of each student s over a small region Is ={
θ ∈ Θ |�θ=�s, rθ ∈ [rsc , r

s
c + 1

N
) ∀c ∈ C

}
and identify any point θs ∈ Is with stu-

dent s. The following proposition shows that the continuum TTC assigns all θs ∈ Is

to the same school, which is the assignment of student s in the discrete model. More-

over, we can directly use the continuum cutoffs for the discrete economy. Further

details and a formal definition of the map Φ are in online Appendix D.5.

Proposition 2. Let E =
(
C,S,�C,�S , q

)
be a discrete economy with N = |S|

students, and let Φ (E) =
(
C,Θ, η, q

N

)
be the corresponding continuum economy. Let

p be the cutoffs produced by Theorem 2 for economy Φ (E). Then the cutoffs p give

the TTC assignment for the discrete economy E, namely,

µdTTC (s | E) = max
�s
{c | rsb ≥ pcb for some b} ,

and for every θs ∈ Is we have that

µdTTC (s | E) = µcTTC (θs |Φ (E)) .

22



In other words, Φ embeds a discrete economy into a continuum economy that

represents it, and the TTC cutoffs in the continuum embedding give the same as-

signment as TTC in the discrete model. This shows that the TTC assignment defined

in Theorem 2 provides a strict generalization of the discrete TTC assignment to a

larger class of economies. We provide an example of an embedding of a discrete

economy in Appendix B.

Next, we show that the continuum economy can also be used to approximate suf-

ficiently similar economies. Formally, we show that the TTC allocations for strongly

convergent sequences of economies are also convergent.

Theorem 3. Consider two continuum economies E = (C,Θ, η, q) and Ẽ = (C,Θ, η̃, q),

where the measures η and η̃ have total variation distance ε. Suppose also that both

measures have full support. Then the TTC allocations in these two economies differ

on a set of students of measure O(ε|C|2).

In Section 4.2, we show that changes to the priorities of a set of high priority

students can affect the final assignment of other students in a non-trivial manner.

This raises the question of what the magnitude of these effects are, and whether the

TTC mechanism is robust to small perturbations in student preferences or school

priorities. Our convergence result implies that the effects of perturbations are pro-

portional to the total variation distance of the two economies, and suggests that the

TTC mechanism is fairly robust to small perturbations in preferences.

3.4 Proper budget sets

The standard definition for a student’s budget set is the set of schools she can be

assigned to by reporting some preference to the mechanism. Specifically, let [E−s;�′]
denote the discrete economy where student s changes her report from �s to �′

(holding others’ reported preferences fixed), and let

B∗ (s | E)
def
=
⋃
�′
µdTTC (s | [E−s;�′])

denote the set of possible school assignments that student s can achieve by unilaterally

changing her reported preferences. Note that s cannot misreport her priority.

We observed in Section 2.4 that in the discrete model the budget set B (s,p)

produced by cutoffs p = p (E) generated by Theorem 1 do not necessarily correspond
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to the set B∗ (s | E). The analysis in this section can be used to show that the budget

sets B∗ (s | E) correspond to the budget sets B (s,p∗) for appropriate cutoffs p∗.

Proposition 3. Let E = (C,S,�S ,�C, q) be a discrete economy, and let

P (E) =
{
p | pcb = γb

(
t(c)
)

where γ (·) , t(c) satisfy trade balance and capacity for Φ (E)
}

be the set of all cutoffs that can be generated by some TTC path γ (·) and stopping

times
{
t(c)
}
c∈C. Then

B∗ (s | E) =
⋂

p∈P(E)

B (s,p) .

Moreover, there exists p∗ ∈ P (E) such that for every student s

B∗ (s | E) = B (s,p∗) .

Proposition 3 allows us to construct proper budget sets for each agent that de-

termine not only their assignment given their current preferences, but also their

assignment given any other submitted preferences. This particular budget set repre-

sentation of TTC makes it clear that it is strategy-proof. In the appendix we prove

Proposition 3 and constructively find p∗.

4 Applications

4.1 Effects of Changes in the Distribution of School Quality

We apply our model to analyze economies where preferences for schools are endoge-

nously determined by the allocation of resources to schools. Empirical evidence

suggests that increased financing affects student achievements (Jackson et al. 2016,

Lafortune et al. 2016, Johnson & Jackson 2017) as well as demand for housing (Hoxby

2001, Cellini et al. 2010), which indicate increased demand for schools. Similarly,

Krueger (1999) finds that smaller classes have a positive impact on student perfor-

mance, and Dinerstein et al. (2014) finds that increased funding for public schools

increases enrollment in public schools and reduces demand for private schools.

Under school choice, such resource allocation decisions can change the desirability

of schools and therefore change the assignment of students to schools. We explore

the implication of such changes in a stylized model. As a shorthand, we refer to an
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increase in the desirability of a school as an increase in the quality of the school. We

explore comparative statics of the allocation and evaluate student welfare. Omitted

proofs and derivations can be found in the online Appendix E.1.

Model with quality dependent preferences

We enrich the model from Section 3 to allow student preferences to depend on

school quality δ = {δc}c∈C, where the desirability of school c is increasing in δc.

An economy with quality dependent preferences is given by E = (C,Υ, υ, q), where

C = {1, 2, . . . , n} is the set of schools and Υ is the set of student types. A student

s ∈ Υ is given by s = (us (· | ·) , rs), where us (c | δ) is the utility of student s for

school c given δ = {δc}c∈C and rsc is the student’s rank at school c. We assume

us (c | ·) is differentiable, increasing in δc and non-increasing in δb for any b 6= c. The

measure υ over Υ specifies the distribution of student types. School capacities are

q = {qc}, where
∑
qc < 1. We will refer to δc as the quality of c.

For a fixed quality δ, let ηδ be the induced distribution over Θ, and let Eδ =

(C,Θ, ηδ, q) denote the induced economy.19 We assume for all δ that ηδ has a Lipschitz

continuous non-negative density νδ that is bounded below on its support and depends

smoothly on δ. For a given δ, let µδ and {pcb (δ)}c∈C denote the TTC assignment and

associated cutoffs for the economy Eδ. We omit the dependence on δ when it is clear

from context.

Comparative statics of the allocation

The following proposition gives the direction of change of the TTC cutoffs when there

are two schools and δ` increases for some ` ∈ {1, 2}. Throughout this subsection,

when considering a fixed δ we assume that schools are labeled in order, unless stated

otherwise.

Proposition 4. Suppose E = (C = {1, 2} ,Υ, υ, q) and δ induces an economy Eδ such

that the TTC path γ that, if possible, assigns seats at school 1 before seats at school 2,

yields p1
2 (δ) > p2

2 (δ).20 Consider δ̂ that increases the quality of school 2, i.e. δ̂2 ≥ δ2

19To make student preferences strict we arbitrarily break ties in favor of schools with lower indices.
We assume the utility of being unassigned is −∞, so all students find all schools acceptable.

20Formally, γ is defined by requiring that for all t it holds that γ′ (t) is the valid direction at γ (t)
with support that is minimal under the order {1} < {1, 2} < {2}.
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and δ1 = δ̂1, and which induces Eδ̂ with TTC path γ̂ that also assigns seats at 1 before

2 when possible and yields p1
2

(
δ̂
)
≥ p2

2

(
δ̂
)

.

Then a change from δ to δ̂ induces the cutoffs pcb (·) to change as follows:

• p1
1 and p1

2 both decrease, i.e., it becomes easier to trade into school 1; and

• p2
2 increases, i.e. higher 2-priority is required to get into school 2.

Proposition 4 is illustrated in Figure 4. As first shown in Hatfield et al. (2016), an

increase in the desirability of school 2 can cause low 2-rank students to be assigned

to school 2. Note that individual students’ budget sets can grow or shrink by more

than one school.

Figure 4: The effect of an increase in the quality of school 2 on TTC cutoffs and budget sets. Dashed
lines indicate initial TTC cutoffs, and dotted lines indicate TTC cutoffs given increased school 2
quality. The cutoffs p11 = p21 and p12 decrease and the cutoff p22 increases. Students in the colored
sections receive different budget sets after the increase. Students in dark blue improve to a budget
set of {1, 2} from ∅, students in light blue improve to {1, 2} from {2}, and students in red have an
empty budget set ∅ after the change and {2} before.

When there are n ≥ 3 schools, it is possible to show that an increase in the quality

of a school ` can either increase or decrease any cutoff. With additional structure we

can provide precise comparative statics that mirror the intuition from Proposition

(4).

Consider the logit economy where students’ utilities for each school c are randomly

distributed as a logit with mean δc, independently of priorities and utilities for other

schools. That is, utility for school c is given by us (c | δ) = δc+εcs with εcs distributed
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as i.i.d. extreme value shifted to have a mean of 0 (McFadden 1973). We assume

that the total measure of students is normalized to 1, that there are more students

than school seats, i.e.
∑

c qc < 1, and that all students prefer any school to being

unassigned21. Schools’ priorities are uncorrelated and uniformly distributed. This

model combines heterogeneous idiosyncratic taste shocks with a common preferences

modifier δc. Proposition 5 gives the TTC assignment in closed form for the logit

economy.

Proposition 5. Under the logit economy schools are labeled in order if q1
eδ1
≤ q2

eδ2
≤

· · · ≤ qn
eδn

, and in such cases the TTC cutoffs pcb for b ≥ c are given by22

pcb = (Rc)
eδb
πc

∏
a<c

(Ra)
eδb
πa
− eδb
πa+1 (4)

where πc =
∑

c′≥c e
δc′ is the normalization term for schools in C(c), for all c ≥ 1

the quantity Rc = 1 −
∑

c′<c qc′ −
πc
eδc
qc is the measure of unassigned, or remaining,

students after the cth round, and R0 = 1.

Moreover, pcb is decreasing in δ` for c < ` and increasing in δ` for b > c = `.

Figure 5 illustrates how the TTC cutoffs change with an increase in the quality

of school `. Using equation (13), we derive closed form expressions for
dpcb
dδ`

, which can

be found in online Appendix E.1.

Remark 2. Proposition 5 can be used to calculate admission probability under mul-

tiple tie-breaking as follows. Consider an economy where priorities are determined

by a multiple tie-breaking rule where the priority of each student at each school is

generated by an independent U [0, 1] lottery draw. As a result, students priorities will

be uniformly distributed over [0, 1]C and uncorrelated with student preferences. If in

addition student preferences are given by the MNL model, this is a logit economy.

In the logit economy the ex-ante probability that a student will gain admission to

school c is given by

1−
∏
b∈C

pcb

with pcb given by Proposition 5.

21Formally, us (φ | δ) = −∞. For welfare calculations we only consider assigned students.
22To simplify notation, when c = 1 we let

∏
c′<c

pc−1c′ = 1 and set ρ1 = q1/e
δ1 .
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Figure 5: The effects of changing the quality δ` of school ` on the TTC cutoffs pcb under the logit

economy. If c < ` then
dpcb
dδ`

< 0 for all b ≥ c, i.e., it becomes easier to get into the more popular

schools. If c > ` then
dpcb
dδ`

= 0. If c = ` then
dpcb
dδ`

=
dp`b
dδ`

> 0 for all b > `, and p`` may increase or
decrease depending on the specific problem parameters. Note that although pcb and pc` look aligned in
the picture, in general it does not hold that pcb = pc` for all b.

Comparative statics of student welfare

We consider a social planner who can affect quality levels δ of schools in economy E .

We suppose that the social planner wishes to assign students to schools at which they

attain high utility, and for the sake of simplicity consider students’ social welfare as

a proxy for the social planner’s objective. Given assignment µ, the social welfare is

given by

U (δ) =

∫
s∈Υ,µ(s)6=φ

us (µ (s) | δ) dυ.

As a benchmark, we first consider neighborhood assignment µNH which assigns

each student to a fixed school regardless of her preferences. We assume this assign-

ment fills the capacity of each school. Social welfare for the logit economy is

UNH (δ) =
∑
c

qc · δc,

because E
[
εµ(s)s

]
= 0 under neighborhood assignment. Under neighborhood assign-

ment, the marginal welfare gain from increasing δ` is dUNH
dδ`

= q`, as an increase in the

school quality benefits each of the q` students assigned to school `.

The budget set formulation of TTC allows us to tractably capture student welfare

under TTC.23 A student who is offered the budget set C(c) = {c, . . . , n} is assigned

23Under TTC the expected utility of student s assigned to school µ(s) depends on the stu-
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to the school ` = arg max
b∈C(c)

{δb + εbs}, and her expected utility is U c = ln
(∑

b≥c e
δb
)

(Small & Rosen 1981). Let N c be the mass of agents with budget set C(c). Then

social welfare under the TTC assignment given δ simplifies to

UTTC (δ) =
∑
c

N c · U c.

This expression for welfare also allows for a simple expression for the marginal

welfare gain from increasing δ` under TTC.

Proposition 6. For the logit economy, the change in social welfare UTTC (δ) under

TTC from a marginal increase in δ` is given by

dUTTC
dδ`

=q` +
∑
c≤`+1

dN c

dδ`
· U c.

Under neighborhood assignment dUNH
dδ`

= q`.

Proposition 6 shows that under TTC a marginal increase in the quality of school `

will have two effects. As under neighborhood assignment, it will increase the utility of

the q` students assigned to ` by dδ`. In addition, the quality increase changes student

preferences, and therefore changes the assignment. The second term captures the

indirect effect on welfare due to changes in the assignment. This effect is captured

by changes in the number of students offered each budget set.

The indirect effect can be negative. In particular, when there are two schools

C = {1, 2} the welfare effect of a quality increase to school 1 is24

dUTTC
dδ1

= q1 +
dN1

dδ1

· U1 +
dN2

dδ1

· U2

= q1 −
(
q1 · eδ2−δ1

) (
ln
(
eδ1 + eδ2

)
− δ2

)
< q1.

An increase in the quality of school 1 gives higher utility for students assigned to 1,

which is captured by the first term. Additionally, it causes some students to switch

their preferences to 1 � 2, making school 1 run out earlier in the TTC algorithm,

and removing school 1 from the budget set of some students. Students whose budget

dent’s budget set B (s,p) because of the dependency of µ (s) on student preferences. Namely,
E [us (µ (s) | δ)] = δµ(s) + E

[
εµ(s)s | δµ(s) + εµ(s)s ≥ δc + εcs ∀c ∈ B (s,p)

]
24Recall that we assume that schools are labeled in order, and thus school 1 is the more selective

school. We use that N1 = q1 + q1e
δ1−δ2 , N2 = q2 − q1eδ2−δ1 .
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set did not change and who switched to 1 � 2 are almost indifferent between the

schools and hence almost unaffected. Students who lost school 1 from their budget

set may prefer school 1 by a large margin, and hence incur significant loss. Thus,

there is a total negative effect from changes in the assignment, which is captured by

the second term.

If a positive mass of students receive the budget set {2} (that is, N2 > 0),

improving the quality of school 2 will have the opposite indirect effect. Specifically,

dUTTC
dδ2

= q2 + q1 · eδ2−δ1
(
ln
(
eδ1 + eδ2

)
− δ2

)
> q2

which is larger than the marginal effect under neighborhood assignment.

If admission cutoffs into both schools are equal (that is, p1
2 = p2

2 and N2 = 0) we

say that both schools are equally over-demanded. In such a case, a marginal increase

in the quality of either school will have a negative indirect effect on welfare.25

Selecting the quality distribution to maximize student welfare

We now provide an illustrative example showing the welfare optimal quality distribu-

tion under DA, TTC and neighborhood assignment. This example also allows us to

compare welfare across mechanisms. In the examples below we fix the school labels

and consider various δ. For some values of δ the schools may be labeled out of order.

Example 3. Consider a logit economy with two schools and q1 = q2 = 3
8
, and let

Q = q1 + q2 denote the total capacity. Quality levels δ are constrained by δ1 + δ2 = 2

and δ1, δ2 ≥ 0.

Under neighborhood assignment UNH/Q = 1 for any choice of δ1, δ2. Under TTC

the unique optimal quality is δ1 = δ2 = 1, yielding UTTC/Q = 1 + E [max (ε1s, ε2s)] =

1 + ln (2) ≈ 1.69. This is because any assigned student has the budget set B = {1, 2}
and is assigned to the school for which he has higher idiosyncratic taste. Welfare is

lower when δ1 6= δ2, because fewer students choose the school for which they have

higher idiosyncratic taste. For instance, given δ1 = 2, δ2 = 0 welfare is UTTC/Q =
1
2

(1 + e−2) log (1 + e2) ≈ 1.20. Under Deferred Acceptance (DA) the unique optimal

quality is also δ1 = δ2 = 1, yielding UDA/Q = 1 + 1
3

ln (2) ≈ 1.23. This is strictly lower

than the welfare under TTC because under DA only students that have sufficiently

25That is, if δ1 = δ2 then dUTTC
dδ1

< q1 and dUTTC
dδ2

< q2. If we fix δ1 + δ2 and consider UTTC (∆)
as a function of ∆ = δ1 − δ2 the function UTTC (∆) will have a kink at ∆ = 0 (see Figure 6c).
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(a) TTC, δ1 = δ2 = 1,
optimal investment.

(b) TTC, δ1 = 2, δ2 = 0. (c) Average student welfare
under TTC, δ1 +δ2 = 2.

(d) DA, δ1 = δ2 = 1,
optimal investment.

(e) DA, δ1 = 2, δ2 = 0. (f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 6: Illustration for Example 3. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1− δ2. Figures (d) and (e) show the budget sets
under DA, and Figure (f) shows the average welfare of assigned students under DA.

high priority for both schools have the budget set B = {1, 2}. Two thirds of assigned

students have a budget set B = {1} or B = {2}, corresponding to the single school for

which they have sufficient priority. If δ1 = 2, δ2 = 0 welfare under DA is UDA/Q ≈ 1.11.

In Example 3, TTC yields higher student welfare by providing all assigned stu-

dents with a full budget set, thus maximizing each assigned student’s contribution

to welfare from horizontal taste shocks. However, the assignment it produces is not

stable. In fact, both schools admit students whom they rank at the bottom, and thus

virtually all unassigned students can potentially block with either school.26 Requiring

a stable assignment will constrain two thirds of the assigned students from efficiently

sorting on horizontal taste shocks.

We next provide an example where the two schools have different capacity, with

26Note that this is not a concern in school choice settings where blocking pairs cannot be assigned
outside of the mechanism.
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(a) TTC, δ1 = δ2 = 1. (b) TTC, δ1, δ2 = 1± ln(2)
2 ,

optimal investment.

(c) Average student welfare
under TTC, δ1 + δ2 = 2.

(d) DA, δ1 = δ2 = 1. (e) DA, δ1 = 2, δ2 = 0,
optimal investment.

(f) Average student welfare
under DA, δ1 + δ2 = 2.

Figure 7: Illustration for Example 4. Figures (a) and (b) show the budget sets under TTC for
different quality levels, and Figure (c) shows the average welfare of assigned students under TTC
for quality levels δ1 + δ2 = 2 for different values of δ1 − δ2. Note that δ1 = δ2 = 1 is no longer
optimal. Figures (d) and (e) show the budget sets under DA, and Figure (f) shows the average
welfare of assigned students under DA.

q1 > q2. To make investment in school 1 more efficient, we assume that (despite

having more students) school 1 requires the same amount of resources to increase

its quality for all its students. Thus, we keep the constraint that δ1 + δ2 = 2. It

is straightforward to see that under neighborhood assignment the welfare optimal

distribution of quality is δ1 = 2, δ2 = 0. In contrast, we find the welfare optimal

distribution under TTC can be closer to egalitarian.

Example 4. Consider a logit economy with two schools and q1 = 1/2, q2 = 1/4,

and let Q = q1 + q2 denote the total capacity. Quality levels δ are constrained by

δ1 + δ2 = 2 and δ1, δ2 ≥ 0.

Under neighborhood assignment the welfare optimal quality is δ1 = 2, δ2 = 0,

yielding UNH/Q = 4/3 ≈ 1.33. Under TTC assignment the unique optimal quality

is δ1 = 1 + 1
2

ln (2) , δ2 = 1 − 1
2

ln (2), yielding UTTC/Q = ln
(

3e√
2

)
≈ 1.75. Under
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these quality levels any assigned student has the budget set B = {1, 2}. Given

δ1 = 2, δ2 = 0 welfare is UTTC/Q ≈ 1.61. The quality levels that are optimal in

Example 3, namely δ1 = 1, δ2 = 1, yield UTTC/Q ≈ 1.46. Under DA assignment the

unique optimal quality is δ1 = 2, δ2 = 0, yielding UDA/Q ≈ 1.45. Given δ1 = 1, δ2 = 1

welfare under DA is UDA/Q ≈ 1.20.

Again in Example 4 we find that the optimal quality distribution under TTC

provides all assigned students with a full budget set, making all schools equally over-

demanded. The optimal quality distribution under neighborhood assignment and

DA allocates all resources to the more efficient school. While quality directed to the

larger school affects more students and yields more direct benefit, under TTC an

egalitarian distribution leads to more welfare gains from sorting on horizontal tastes.

For general parameters the welfare gain from sorting can be lower or higher than the

welfare gains from directing all resources to the more efficient school.

Finally, consider a central school board with a fixed amount of resources K to

be allocated to the n schools. We assume that the cost of quality δc is the convex

function κc (δc) = eδc . This specification makes bigger schools more efficient.27 Using

Proposition 6 we solve for the optimal distribution of school quality. Despite the

heterogeneity among schools, social welfare is maximized when all assigned students

have a full budget set, which occurs when the amount allocated to each school is

proportional to the number of seats at the school.

Proposition 7. Consider a logit economy with cost function κc (δc) = eδc∀c and

resource constraint
∑

c κc (δc) ≤ K. Social welfare is uniquely maximized when the

resources κc allocated to school c are proportional to the capacity qc, that is,

κc (δc) =
qc∑
b qb

K

and all assigned students θ receive a full budget set, i.e., B (θ,p) = {1, 2, . . . , n}
for all assigned students θ.

Under optimal investment, the resulting TTC assignment is such that every as-

signed student receives a full budget set and is able to attend their top choice school.

27Note that κc is the total school funding. This is equivalent to setting the student utility of
school c to be to us (c | κc) = log (κc) + εcs = log (κc/qc) + log (qc) + εcs, which is the log of the
per-student funding plus a fixed school utility that is larger for bigger schools.
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More is invested in higher capacity schools, as they provide more efficient investment

opportunities, but the investment is balanced across schools.

4.2 Design of TTC Priorities

To better understand the role of priorities in the TTC mechanism, we examine how

the TTC assignment changes with changes in the priority structure. Notice that any

student θ whose favorite school is c and who is within the qc highest ranked students

at c is guaranteed admission to c. In the following example, we consider changes to

the relative priority of such highly ranked students and find that these changes can

have an impact on the assignment of other students, without changing the assignment

of any student whose priority changed.

Example 5. The economy E has two schools 1, 2 with capacities q1 = q2 = q,

students are equally likely to prefer each school, and student priorities are uniformly

distributed on [0, 1] independently for each school and independently of preferences.

The TTC algorithm ends after a single round, and the resulting assignment is given

by p1
1 = p2

1 = p1
2 = p2

2 =
√

1− 2q. The derivation can be found in Appendix E.2.

Consider the set of students
{
θ | rθc ≥ m ∀c

}
for some m > 1 − q. Any student

in this set is assigned to his top choice. Suppose we construct an economy E ′ by

arbitrarily changing the rank of students within the set, subject to the restriction

that their ranks must remain in [m, 1]2.28 The range of possible TTC cutoffs for E ′

is given by p1
1 = p2

1, p
1
2 = p2

2 where

p1
1 ∈ [p, p̄] , p2

2 =
1

p1
1

(1− 2q)

for p =
√

(1− 2q) m2

1−2m+2m2 and p =
√

(1− 2q) 1−2m+2m2

m2 . Figure 8 illustrates the

range of possible TTC cutoffs for E ′ and the economy E for which TTC obtains one

set of extreme cutoffs.

Example 5 has several implications. First, it shows that it is not possible to

directly compute TTC cutoffs from student demand. The set of cutoffs such that

student demand is equal to school capacity (depicted by the grey curve in Figure 8)

are the cutoffs that satisfy p1
1 = p2

1, p
1
2 = p2

2 and p1
1p

2
2 = 1 − 2q. Under any of these

28The remaining students still have ranks distributed uniformly on the complement of [m, 1]2.
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Figure 8: The range of possible TTC cutoffs in example 5 with q = 0.455 and m = 0.6. The points
depict the TTC cutoffs for the original economy and the extremal cutoffs for the set of possible
economies E ′, with the range of possible TTC cutoffs for E ′ given by the bold curve. The dashed line
is the TTC path for the original economy. The shaded squares depict the changes to priorities that
generate the economy E which has extremal cutoffs. In E the priority of all top ranked students is
uniformly distributed within the smaller square. The dotted line depicts the TTC path for E, which

results in cutoffs p11 =
√

(1− 2q) 1−2m+2m2

m2 ≈ 0.36 and p22 =
√

(1− 2q) m2

1−2m+2m2 ≈ 0.25.

cutoffs the students in
{
θ | rθc ≥ m ∀c

}
have the same demand, but the resulting TTC

outcomes are different. It follows that the mechanism requires more information to

determine the assignment. However, Theorem 3 implies that the changes in TTC

outcomes are small if 1−m is small.

A second implication is that the TTC priorities can be ‘bossy’ in the sense that

changes in the relative priority of high priority students can affect the assignment of

other students, even when all high priority students receive the same assignment. No-

tice that in all the economies considered in Example 5, we only changed the relative

priority within the set
{
θ | ∃c s.t. rθc ≥ m

}
, and all these students were always as-

signed to their top choice. However, these changes resulted in a different assignment

for low priority students. For example, if q = 0.455 and m = 0.4, a student θ with

priority rθ1 = 0.35,rθ2 = 0.1 could possibly receive his first choice or be unassigned.

Such changes to priorities may naturally arise when there are many indifferences in

student priorities, and tie-breaking is used. Since priorities are bossy, the choice of

tie-breaking between high-priority students can have indirect effects on the assign-

ment of low priority students.
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4.3 Comparing Mechanisms

In Section 4.1 we compared the welfare effects of changes in school resource allocation

under various school choice mechanisms. Our formulation of TTC also allows us to

compare TTC with other school choice mechanisms. In this section, we provide a

theoretical explanation for observed similarities between assignments under TTC and

Deferred Acceptance (DA), as well as a comparison of the number of blocking pairs

induced by TTC and the closely related Clinch and Trade mechanism.

Both TTC and Deferred Acceptance (DA) (Gale & Shapley 1962) are strategy-

proof, but differ in that TTC is efficient whereas DA is stable. Kesten (2006), Ehlers

& Erdil (2010) show the two mechanisms are equivalent only under strong conditions

that are unlikely to hold in practice. However, Pathak (2016) evaluates the two

mechanisms on application data from school choice in New Orleans and Boston,

and reports that the two mechanisms produce similar outcomes. In Section 4.1 we

compared DA and TTC in terms of welfare and assignment and found that large

differences were possible.29 Pathak (2016) conjectures that the neighborhood priority

used in New Orleans and Boston led to correlation between student preferences and

school priorities that may explain the similarity between the TTC and DA allocations

in these cities.

To study this conjecture, we consider a simple model with neighborhood priority.

There are n neighborhoods, each with one school and a mass q of students. Schools

have capacities q1 ≤ · · · ≤ qn = q, and each school gives priority to students in their

neighborhood. For each student, the neighborhood school is their top ranked choice

with probability α; otherwise the student ranks the neighborhood school in position

k drawn uniformly at random from {2, 3, . . . , n}. Student preference orderings over

non-neighborhood schools are drawn uniformly at random.

We find that the proportion of students whose assignments are the same under

both mechanisms scales linearly with the probability of preference for the neighbor-

hood school α, supporting the conjecture of Pathak (2016).

Proposition 8. The proportion of students who have the same assignments under

29Che & Tercieux (2015) show that when there are a large number of schools with a single seat
per school and preferences are random both DA and TTC are asymptotically efficient and stable
and give asymptotically equivalent allocations. As Example 3 shows, these results do not hold when
there are many students and a few large schools.
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TTC and DA is given by

α

∑
i qi
nq

.

Proof. We use the methodologies developed in Section 3.2 and in Azevedo & Leshno

(2016) to find the TTC and DA allocations respectively. For each school, students

with priority are given a lottery number uniformly at random in
[
n−1
n
, 1
]
, and students

without priority are given a lottery number uniformly at random in
[
0, n−1

n

]
, where

lottery numbers at different schools are independent. For all values of α, the TTC

cutoffs are given by pij = pji = 1 − qi
nq

for all i ≤ j, and the DA cutoffs are given by

pi = 1− qi
nq

. The derivations of the cutoffs can be found in Appendix E.3.

The students who have the same assignments under TTC and DA are precisely

the students at neighborhood i whose ranks at school i are above 1− qi
nq

, and whose

first choice school is their neighborhood school. This set of students comprises an

α
∑
i qi
nq

fraction of the entire student population, which scales proportionally with the

correlation between student preferences and school priorities.

We can also compare TTC with the Clinch and Trade (C&T) mechanism intro-

duced by Morrill (2015b). The C&T mechanism identifies students who are guaran-

teed admission to their favorite school c by having priority rθc ≥ 1 − q and assigns

them to c by ‘clinching’ without trade. Morrill (2015b) suggests that this design

choice is desirable because it can reduce the number of blocking pairs induced by

the assignment, and gives an example where the C&T assignment has fewer blocking

pairs than the TTC assignment. The fact that allowing students to clinch can change

the assignment can be interpreted as another example of the bossiness of priorities

under TTC: we can equivalently implement C&T by running TTC on a changed

priority structure where students who clinched at school c have higher rank at c than

any other student.30 The following proposition builds on Example 5 and shows that

C&T may produce more blocking pairs than TTC.

Proposition 9. The Clinch and Trade mechanism can produce more, fewer or an

equal number of blocking pairs compared to TTC.

30For brevity, we abstract away from certain details of C&T mechanism that are important when
not all schools run out at the same round.

37



5 Discussion

We can simplify how the TTC outcome is communicated to students and their families

by using the cutoff characterization. The cutoffs {pcb} are calculated in the course

of running the TTC algorithm. The cutoffs can be published to allow parents to

verify their assignment, or the budget set structure can be communicated using the

language of tokens (see footnote 6). We hope that these methods of communicating

TTC will make the mechanism more palatable to students and their parents, and

facilitate a more informed comparison with the Deferred Acceptance mechanism.

The differences between the cutoff structures of these mechanisms can help clarify

the different role of priorities under these mechanisms.

Examples provided in the paper utilized functional form assumptions to gain

tractability. The methodology can be used more generally with numerical solvers.

This provides a useful alternative to simulation methods that can be more efficient for

large economies, or for calculating an average outcome for large random economies.

For example, most school districts uses tie-breaking rules, and current simulation

methods perform many draws of the random tie-breaking lottery to calculate the

expected outcomes. Our methodology directly calculates the expected outcome from

the distribution. In Section 4.2 we characterize all the possible TTC outcomes for

a class of tie-breaking rules, and find that the choice of tie-breaking rule can have

significant effect on the assignment. We leave the problem of determining the optimal

choice of tie-breaking lottery for future research.

The model assumes for simplicity that all students and schools are acceptable.

It can be naturally extended to allow for unacceptable students or schools by eras-

ing from student preferences any school that they find unacceptable or that finds

them unacceptable. Type-specific quotas can be incorporated, as in Abdulkadiroğlu

& Sönmez (2003), by adding type-specific capacity equations and erasing from the

preference list of each type all the schools which do not have remaining capacity for

their type.
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A Intuition for the Continuum TTC Model

In this section, we provide some intuition for our main results by considering a more

direct adaptation of the TTC algorithm to continuum economies. Informally speak-

ing, consider a continuum TTC algorithm in which schools offer seats to their highest

priority remaining students, and students are assigned through clearing of trading

cycles. This process differs from the discrete TTC algorithm as there is now a set

of zero measure of highest priority students at each school, and the resulting trading

cycles are also within sets of students of zero measure.

There are a few challenges in turning this informal algorithm description into a

precise definition. First, each cycle is of zero measure, but the algorithm needs to

appropriately reduce school capacities as students are assigned. Second, a school will

generally offer seats to multiple types of students at once. This implies each school

may be involved in multiple cycles at a given point, a type of multiplicity that leads

to non-unique TTC allocations in the discrete setting.

To circumvent the challenges above, we define the algorithm in terms of its ag-

gregate behavior over many cycles. Instead of tracing each cleared cycle, we track

the state of the algorithm by looking at the fraction of each school’s priority list

that has been cleared. Instead of progressing by selecting one cycle at a time, we

determine the progression of the algorithm by conditions that must be satisfied by

any aggregation of cleared cycles. These yield equations (2) and (3), which determine

the characterization given in Theorem 2.

A.1 Tracking the State of the Algorithm through the TTC

Path γ

Consider some point in time during the run of the discrete TTC algorithm before

any school has filled its capacity. While the history of the algorithm up to this

point includes all previously cleared trading cycles, it is sufficient to record only

the top priority remaining student at each school. This is because knowing the top

remaining student at each school allows us to know exactly which students were

previously assigned, and which students remain unassigned. Assigned students are

relevant for the remainder of the algorithm only insofar as they reduce the number

of seats available. Because all schools have remaining capacity, all assigned students

are assigned to their top choice, and we can calculate the remaining capacity at each
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school.

To formalize this notion, let τ be some time point during the run of the TTC

algorithm before any school has filled its capacity. For each school c, let γc (τ) ∈ [0, 1]

be the percentile rank of the remaining student with highest c-priority. That is, at

time τ in the algorithm each school c is offering a seat to students s for whom

rsc = γc (τ). Let γ (τ) be the vector (γc (τ))c∈C. The set of students that have already

been assigned at time τ is {s | rs 6< γ (τ)}, because any student s where rsc > γc (τ)

for some c must have already been assigned. Likewise, the set of remaining unassigned

students is {s | rs ≤ γ (τ)}. See Figure 9 for an illustration. Since all assigned

students were assigned to their top choice, the remaining capacity at school c ∈ C
is qc − |{s | rs 6< γ (τ) and Chs (C) = c}|. Thus, γ (τ) captures all the information

needed for the remainder of the algorithm.

𝛾(𝜏)

TTC path 𝛾 Assigned 
at time 𝜏

Unassigned 
at time 𝜏

Figure 9: The set of students assigned at time τ is described by the point γ (τ) on the TTC path.
Students in the grey region with rank better than γ (τ) are assigned, and students in the white region
with rank worse than γ (τ) are unassigned.

This representation can be readily generalized to continuum economies. In the

continuum, the algorithm progresses in continuous time. The state of the algorithm

at time τ ∈ R≥ is given by γ (τ) ∈ [0, 1]C, where γc (τ) ∈ [0, 1] is the percentile rank

of the remaining students with highest c-priority. By tracking the progression of the

algorithm through γ (·) we avoid looking at individual trade cycles, and instead track

how many students were already assigned from each school’s priority list.
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A.2 Determining the Algorithm Progression through Trade

Balance

The discrete TTC algorithm progresses by finding and clearing a trade cycle. This

cycle assigns a set of discrete students; for each involved school c the top student is

cleared and γc (·) is reduced. In the continuum each cycle is infinitesimal, and any

change in γ (·) must involve many trade cycles. Therefore, we seek to determine the

progression of the algorithm by looking at the effects of clearing many cycles.

Suppose at time τ1 the TTC algorithm has reached the state x = γ (τ1), where

γ (·) is differentiable at τ1 and d = −γ′ (τ1) ≥ 0. Let ε > 0 be a small step size,

and assume that by sequentially clearing trade cycles the algorithm reaches the state

γ (τ2) at time τ2 = τ1 + ε. Consider the sets of students offered seats and assigned

seats during this time step from time τ1 to time τ2. Let c ∈ C be some school. For

each cycle, the measure of students assigned to school c is equal to the measure of

seats offered31 by school c. Therefore, if students are assigned between time τ1 and τ2

through clearing a collection of cycles, then the set of students assigned to school c has

the same measure as the set of seats offered by school c. If γ (·) and η are sufficiently

smooth, the measures of both of these sets can be approximately expressed in terms

of ε ·d and the marginal densities {Hc
b (x)}b,c∈C, yielding an equation that determines

d. We provide an illustrative example with two schools in Figure 10. For the sake

of clarity, we omit technical details in the ensuing discussion. A rigorous derivation

can be found in online Appendix F.

We first identify the measure of students who were offered a seat at a school b or

assigned to a school c during the step from time τ1 to time τ2. If d = −γ′ (τ1) and ε

is sufficiently small, we have that for every school b

|γb (τ2)− γb (τ1)| ≈ εdb,

that is, during the step from time τ1 to time τ2 the algorithm clears students with

31Strictly speaking, the measure of students assigned to each school during the time step is equal
to the measure of seats at that school which were claimed by the student offered the seat or traded
by the student offered the seat during the time step (not the measure of seats offered). A seat can
be offered but not claimed or traded in one of two ways. The first occurs when the seat is offered
at time τ but not yet claimed or traded. The second is when a student is offered two or more
seats at the same time, and trades only one of them. Both of these sets are of η-measure 0 under
our assumptions, and thus the measure of seats claimed or traded is equal to the measure of seats
offered.
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b-ranks between γb (τ1) = x and γb (τ2) = x− εdb. To capture this set of students, let

Tb (x, εdb)
def
=
{
θ ∈ Θ | rθ ≤ x, rθb > x− εdb

}
denote the set of students with ranks in this range. For all ε, Tb (x, εdb) is the set of

top remaining students at b, and when ε is small, Tb (x, εdb) is approximately the set

of students who were offered a seat at school b during the step.32

To capture the set of students that are assigned to a school c during the step,

partition the set Tb (x, εdb) according to the top choice of students. Namely, let

T cb (x, εdb)
def
=
{
θ ∈ Tb (x, εdb) | Chθ (C) = c

}
,

denote the top remaining students on b’s priority list whose top choice is school c.

Then the set of students assigned to school c during the step is ∪aT ca (x, εda), the set

of students that got an offer from some school a ∈ C and whose top choice is c.

Figure 10: The set of students that are assigned during a small time step between τ1 and τ2. The
dot indicates γ (τ1) = x. The highlighted areas indicate the students T cb (x, εdb) who are offered a
seat during this step. Student in the blue (red) region receive an offer from school 1 (school 2). The
pattern indicates whether a student received an offer from his preferred school. Trade balance is
satisfied when there is an equal mass of students in the checkered regions.

We want to equate the measure of the set ∪aT ca (x, εda) of students who were

assigned to c with the measure of the set of students who are offered a seat at c,

32The students in the set Tb (x, εdb) ∩ Ta (x, εda) could have been offered a seat at school a and
assigned before getting an offer from school b. However, for small ε the intersection is of measure
O
(
ε2
)

and therefore negligible.
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which is approximately the set Tc (x, εdc). By smoothness of the density of η, for

sufficiently small δ we have that

η (T cb (x, δ)) ≈ δ ·Hc
b (x) .

Therefore, we have that33

η (∪aT ca (x, εda)) ≈
∑
a∈C

η (T ca (x, εda)) ≈
∑
a∈C

εda ·Hc
a (x) ,

η (Tc (x, εdc)) = η (∪aT ac (x, εdc)) ≈
∑
a∈C

εdc ·Ha
c (x) .

In sum, if the students assigned during the step from time τ1 to time τ2 are cleared via

a collection of cycles, we must have the following condition on the gradient d = γ′ (τ1)

of the TTC path, ∑
a∈C

εda ·Hc
a (x) ≈

∑
a∈C

εdc ·Ha
c (x) .

Formalizing this argument yields the marginal trade balance equations at x =

γ (τ1), ∑
a∈C

γ′a (τ1) ·Hc
a (x) =

∑
a∈C

γ′c (τ1) ·Ha
c (x) .

A.3 Interpretation of Solutions to the Trade Balance Equa-

tions

The previous subsection showed that any small step clearing a collection of cycles

must correspond to a gradient γ′ that satisfies the trade balance equations. We next

characterize the set of solutions to the trade balance equations and explain why any

solution corresponds to clearing a collection of cycles.

Let γ (τ) = x, and consider the set of valid gradients d = −γ′ (τ) ≥ 0 that solve

the trade balance equations for x∑
a∈C

da ·Hc
a (x) =

∑
a∈C

dc ·Ha
c (x) .

Consider the following equivalent representation. Construct a graph with a node for

33These approximations make use of the fact that η (Tb (x, εdb) ∩ Ta (x, εda)) = O
(
ε2
)

for small
ε.
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each school. Let the weight of node b be db, and let the flow from node b to node c

be fb→c = db ·Hc
b (x). The flow fb→c represents the flow of students who are offered a

seat at b and wish to trade it for school c when the algorithm progresses down school

b’s priority list at rate db. Figure 11 illustrates such a graph for C = {1, 2, 3, 4}.
Given a collection of cycles let db be the number of cycles containing node b. It is

straightforward that any node weights d obtained in this way give a zero-sum flow,

i.e. total flow into each node is equal to the total flow out of the node. Standard

arguments from network flow theory show that the opposite also holds, that is, any

zero-sum flow can be decomposed into a collection of cycles. In other words, the

algorithm can find a collection of cycles that clears each school c’s priority list at rate

dc if and only if and only if d is a solution to the trade balance equations.

Figure 11: Example of a graph representation for the trade balance equations at x. There is an edge
from b to c if Hc

b (x) > 0. The two communication classes are framed.

To characterize the set of solutions to the trade balance equations we draw on

a connection to Markov chains. Consider a continuous time Markov chain over the

states C, and transition rates from state b to state c equal to Hc
b (x). The stationary

distributions of the Markov chain are characterized by the balance equations, which

state that the total probability flow out of state c is equal to the total probability flow

into state c. Mathematically, these are exactly the trade balance equations. Hence

d is a solution to the trade balance equations if and only if d/‖d‖1 is a stationary

distribution of the Markov chain.

This connection allows us to fully characterize the set of solutions to the trade

balance equations through well known results about Markov chains. We restate them

here for completeness. Given a transition matrix P , a recurrent communication

class is a subset K ⊆ C, such that the restriction of P to rows and columns with

coordinates in K is an irreducible matrix, and P b
c = 0 for every c ∈ K and b /∈ K.

See Figure 11 for an example. There exists at least one recurrent communication

class, and two different communication classes have empty intersection. Let the set

of communicating classes be {K1, . . . , K`}. For each communicating class Ki there is
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a unique vector dKi that is a stationary distribution and dKic = 0 for any c /∈ Ki. The

set of stationary distributions of the Markov chain is given by convex combinations

of
{
dK1 , . . . ,dK`

}
.

An immediate implication is that a solution to the trade balance equations al-

ways exists. As an illustrative example, we provide the following result for when η

has full support.34 In this case, the TTC path γ is unique (up to rescaling of the

time parameter). This is because full support of η implies that the matrix H (x) is

irreducible for every x, i.e. there is a single communicating class. Therefore there is

a unique (up to normalization) solution d = −γ′ (τ) to the trade balance equations

at x = γ (τ) for every x and the path is unique.

Lemma 1. Let E = (C,Θ, η, q) be a continuum economy where η has full support.

Then there exists a TTC path γ that is unique up to rescaling of the time parameter

t. For τ ≤ minc∈C
{
t(c)
}

we have that γ(·) is given by

dγ(t)

dt
= d (γ(t))

where d(x) is the solution to the trade balance equations at x, and d (x) is unique up

to normalization.

On the Multiplicity of TTC Paths

In general, there can be multiple solutions to the trade balance equations at x, and

therefore multiple TTC paths. The Markov chain and recurrent communication

class structure give intuition as to why the TTC assignment is still unique. Each

solution dKi corresponds to the clearing of cycles involving only schools within the

set Ki. The discrete TTC algorithm may encounter multiple disjoint trade cycles,

and the outcome of the algorithm is invariant to the order in which these cycles are

cleared (when preferences are strict). Similarly here, the algorithm may encounter

mutually exclusive combinations of trade cycles
{
dK1 , . . . ,dK`

}
, which can be cleared

sequentially or simultaneously at arbitrary relative rates. Theorem 2 shows that just

like the outcome of the discrete TTC algorithm does not depend on the cycle clearing

order, the outcome of the continuum TTC algorithm does not depend on the order

in which
{
dK1 , . . . ,dK`

}
are cleared.

34η has full support if for every open set A ⊂ Θ we have η(A) > 0.

49



As an illustration, consider the unique solution dK for the communicating class

K = {1, 2}, as illustrated in Figure 11. Suppose that at some point x we have

H1
1 (x) = 1/2, H2

1 (x) = 1/2 and H1
2 (x) = 1. That is, the marginal mass of top

ranked students at either school is 1, all the top marginal students of school 2 prefer

school 1, and half of the top marginal students of school 1 prefer school 1 and half

prefer school 2. The algorithm offers seats and goes down the schools’ priority lists,

assigning students through a combination of two kinds of cycles: the cycle 1 	where

a student is offered a seat at 1 and is assigned to 1, and a cycle 1� 2 where a student

who was offered a seat at 1 trades her seat with a student who was offered a seat at

2. Given the relative mass of students, the cycle 1 � 2 should be twice as frequent

as the cycles 1 	. Therefore, clearing cycles leads the mechanism to go down school

1’s priority list at twice the speed it goes down school 2’s list, or d1 = 2 · d2, which is

the unique solution to the trade balance equations at x (up to normalization).

Figure 12: Illustration of the gradient field d (·) and path γ (·) (ignoring the capacity equations).

Figure 12 illustrates the path γ (·) and the solution d (x) to the trade balance

equations at x. Note that for every x we can calculate d (x) from H (x). When

there are multiple solutions to the trade balance equations at some x, we may select

a solution d (x) for every x such that d (·) is a sufficiently smooth gradient field.

The TTC path γ (·) can be generated by starting from γ (0) = 1 and following the

gradient field.
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A.4 When a School Fills its Capacity

So far we have described the progression of the algorithm while all schools have

remaining capacity. To complete our description of the algorithm we need to describe

how the algorithm detects that a school has exhausted all its capacity, and how the

algorithm continues after a school is full.

As long as there is still some remaining capacity, the trade balance equations

determine the progression of the algorithm along the TTC path γ (·). The mass of

students assigned to school c at time τ is

Dc (γ (τ)) = η
({
θ | rθ 6< γ (τ) , Chθ (C) = c

})
.

Because γ (·) is continuous and monotonically decreasing in each coordinate, Dc (γ (τ))

is a continuous increasing function of τ . Therefore, the first time during the run of

the continuum TTC algorithm at which any school reached its capacity is given by

t(c
∗) that solves the capacity equations

Dc∗
(
γ
(
t(c
∗)
))

= qc∗

Da
(
γ
(
t(c
∗)
))
≤ qa ∀a ∈ C

where c∗ is the first school to reach its capacity.

Once a school has filled up its capacity, we can eliminate that school and apply

the algorithm to the residual economy. Note that the remainder of the run of the al-

gorithm depends only on the remaining students, their preferences over the remaining

schools, and remaining capacity at each school. After eliminating assigned students

and schools that have reached their capacity we are left with a residual economy that

has strictly fewer schools. To continue the run of the continuum TTC algorithm, we

may recursively apply the same steps to the residual economy. Namely, to continue

the algorithm after time t(c
∗) start the path from γ

(
t(c
∗)
)

and continue the path us-

ing a gradient that solves the trade balance equations for the residual economy. The

algorithm follows this path until one of the remaining schools fills its capacity, and

another school is removed.

51



A.5 Comparison between Discrete TTC and Continuum TTC

Table 1 summarizes the relationship between the discrete and continuum TTC algo-

rithms, and provides a summary of this section. It presents the objects that define the

continuum TTC algorithm with their counterparts in the discrete TTC algorithm.

For example, running the continuum TTC algorithm on the embedding Φ (E) of a

discrete economy E performs the same assignments as the discrete TTC algorithm,

except that the continuum TTC algorithm performs these assignments continuously

and in fractional amounts instead of in discrete steps.

Discrete TTC → Continuum TTC Expression Equation

Cycle → Valid gradient d (x)
trade balance

equations

Algorithm progression → TTC path γ(·) γ′ (τ) = d (γ (τ))

School removal → Stopping times t(c) capacity equations

Table 1: The relationship between the discrete and continuum TTC processes.

Finally, we note that the main technical content of Theorem 2 is that there always

exists a TTC path γ and stopping times
{
t(c)
}

that satisfy the trade balance and

capacity equations, and that these necessary conditions, together with the capacity

equations (3), are sufficient to guarantee the uniqueness of the resulting assignment.

B Example: Embedding a discrete economy in the

continuum model

Consider the discrete economy E =
(
C,S,�S ,�C, q

)
with two schools and six stu-

dents, C = {1, 2}, S = {a, b, c, u, v, w}. School 1 has capacity q1 = 4 and school 2 has

capacity q2 = 2. The school priorities and student preferences are given by

1 : a � u � b � c � v � w, a, b, c : 1 � 2,

2 : a � b � u � v � c � w, u, v, w : 2 � 1.
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In Figure 13, we display three TTC paths for the continuum embedding Φ (E) of

the discrete economy E. The first path γall corresponds to clearing all students in

recurrent communication classes, that is, all students in the maximal union of cycles

in the pointing graph. The second path γ1 corresponds to taking K = {1} whenever

possible. The third path γ2 corresponds to taking K = {2} whenever possible. We

remark that the third path gives a different first round cutoff point p1, but all three

paths give the same allocation.

B.1 Calculating the TTC paths

In this section, we calculate the TTC paths γall, γ1 and γ2. We consider only solu-

tions d to the trade balance equations (2) that have been normalized so that d·1 = −1.

For brevity we call such solutions valid directions. The relevant valid directions are

shown in Figure 14.

We first calculate the TTC path in the regions where the TTC paths are the

same. At every point (x1, x2) with 5
6
< x1 ≤ x2 ≤ 1 the H matrix is

[
x2 − 5

6
0

x1 − 5
6

0

]
,

so d = [−1, 0] is the unique valid direction and the TTC path is defined uniquely

for t ∈
[
0, 1

6

]
by γ (t) = (1− t, 1). This section of the TTC path starts at (1, 1) and

ends at
(

5
6
, 1
)
. At every point

(
5
6
, x2

)
with 5

6
< x2 ≤ 1 the H matrix is

[
0 1

6

0 0

]
, so

d = [0,−1] is the unique valid direction, and the TTC path is defined uniquely for

t ∈
[

1
6
, 1

3

]
by γ (t) =

(
5
6
, 7

6
− t
)
. This section of the TTC path starts at

(
5
6
, 1
)

and

ends at
(

5
6
, 5

6

)
.
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TTC path γall clears all students in recurrent communication classes.

TTC path γ1 clears all students who want school 1 before students who want school 2.

TTC path γ2 clears all students who want school 2 before students who want school 1.

Figure 13: Three TTC paths and their cutoffs and allocations for the discrete economy in example
B. In each set of two squares, students in the left box prefer school 1 and students in the right box
prefer school 2. The first round TTC paths are solid, and the second round TTC paths are dotted.
The cutoff points p1 and p2 are marked by filled circles. Students shaded dark blue are assigned to
school 1 and students shaded dark light are assigned to school 2.

At every point (x1, x2) with 2
3
< x1, x2 ≤ 5

6
the H matrix is

[
0 1

6
1
6

0

]
, and so

d =
[
−1

2
,−1

2

]
is the unique valid direction, the TTC path is defined uniquely to lie
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on the diagonal γ1 (t) = γ2 (t), and this section of the TTC path starts at
(

5
6
, 5

6

)
and ends at

(
2
3
, 2

3

)
. At every point x =

(
1
3
, x2

)
with 1

3
< x2 ≤ 2

3
the H matrix is[

0 6x2 − 2

0 0

]
, and so d = [0,−1] is the unique valid direction, and the TTC path is

parallel to the y axis. Finally, at every point
(
x1,

1
3

)
with 0 < x1 ≤ 2

3
, the measure

of students assigned to school c1 is at most 3, and the measure of students assigned

to school c2 is 2, so c2 is unavailable. Hence, from any point
(
x1,

1
3

)
the TTC path

moves parallel to the x1 axis.

Figure 14: The valid directions d (x) for the continuum embedding Φ (E). Valid directions d (x) are
indicated for points x in the grey squares (including the upper and right boundaries but excluding
the lower and left boundaries), as well as for points x on the black lines. Any vector d (x) is a valid
direction in the lower left gray square. The borders of the squares corresponding to the students are
drawn using dashed gray lines.

We now calculate the various TTC paths where they diverge.

At every point x = (x1, x2) with 1
2
< x1, x2 ≤ 2

3
the H matrix is

[
0 0

0 0

]
(i.e. there

are no marginal students). Moreover, at every point x = (x1, x2) with 1
3
< x1, x2 ≤ 1

2

the H matrix is

[
1
6

0

0 1
6

]
. Also, at every point x = (x1, x2) with 1

3
< x1 ≤ 1

2
and

1
2
< x2 ≤ 2

3
, the H matrix is

[
1
6

0

0 0

]
. The same argument with the coordinates

swapped gives that H =

[
0 0

0 1
6

]
when 1

2
< x1 ≤ 2

3
and 1

3
< x2 ≤ 1

2
. Hence in all

these regions, both schools are in their own recurrent communication class, and any

vector d is a valid direction.
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The first path corresponds to taking d =
[
−1

2
,−1

2

]
, the second path corresponds

to taking d = [−1, 0] and the third path corresponds to taking d = [0,−1]. The first

path starts at
(

2
3
, 2

3

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. The third path starts

at
(

2
3
, 2

3

)
and ends at

(
2
3
, 1

3

)
where school 2 fills. Finally, when x =

(
1
3
, x2

)
with

1
3
< x2 ≤ 1

2
, the H matrix is

[
0 1

0 1

]
and so d = [0,−1] is the unique valid direction,

and the second TTC path starts at
(

1
3
, 1

2

)
and ends at

(
1
3
, 1

3

)
where school 2 fills. All

three paths continue until
(
0, 1

3

)
, where school 1 fills.

Note that all three paths result in the same TTC allocation, which assigns students

a, b, c, w to school 1 and u, v to school 2. All three paths assign the students assigned

before p1 (students a, u, b, c for paths 1 and 2 and a, u, b for path 3) to their top choice

school. All three paths assign all remaining students to school 1.
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